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Abstract—Extensive research has been conducted on senti-
ment analysis for software engineering (SA4SE). Researchers
have invested much effort in developing customized tools (e.g.,
SentiStrength-SE, SentiCR) to classify the sentiment polarity for
Software Engineering (SE) specific contents (e.g., discussions in
Stack Overflow and code review comments). Even so, there is still
much room for improvement. Recently, pre-trained Transformer-
based models (e.g., BERT, XLNet) have brought considerable
breakthroughs in the field of natural language processing (NLP).
In this work, we conducted a systematic evaluation of five existing
SA4SE tools and variants of four state-of-the-art pre-trained
Transformer-based models on six SE datasets. Our work is the
first to fine-tune pre-trained Transformer-based models for the
SA4SE task. Empirically, across all six datasets, our fine-tuned
pre-trained Transformer-based models outperform the existing
SA4SE tools by 6.5-35.6% in terms of macro/micro-averaged F1
scores.

Index Terms—Sentiment Analysis, Software Mining, Natural
Language Processing, Pre-trained Models

I. INTRODUCTION

Sentiment analysis is a computational study of people’s

opinions, attitudes, and emotions toward an entity, which can

be an individual, an event, or a topic [1]. Sentiment analysis

for software engineering (SA4SE) has drawn much attention

in recent years [2]–[10]. Most research considers sentiment

analysis as a sentiment polarity classification task. For a given

text unit, the goal is to determine its sentiment orientation,

i.e., negative, neutral, or positive.

To understand the performance of SA4SE tools, three

benchmarking studies have been conducted: Lin et al. [9] com-

pared five sentiment analysis tools, i.e., SentiStrength, NLTK,

Stanford CoreNLP, SentiStrength-SE, and Stanford CoreNLP

SO on three datasets – mobile app reviews, Stack Overflow

posts, and Jira issue comments. In terms of the number of

correct predictions, SentiStrength-SE, Stanford CoreNLP, and

SentiStrength perform the best for one of the datasets. Islam

et al. [7] compared three SA4SE tools, i.e., SentiStrength-

SE, Senti4SD, and EmoTxt, on three datasets – Jira issue

comments, Stack Overflow posts, and code review comments.

They found that SentiStrength-SE achieved the highest macro-

averaged F1-score for Jira issue comment and code review

comment datasets. At the same time, Senti4SD performed

the best for the Stack Overflow post dataset. Novielli et al.

[8] compared four tools, i.e., Senti4SD, SentiStrength-SE,

SentiCR, and SentiStrength, on four datasets – Stack Overflow

∗Bowen Xu is the corresponding author.

posts, Jira issue comments, code reviews comments, and Stack

Overflow posts related to Java libraries.1 They found that

Senti4SD achieved the highest macro-averaged F1-score for

the Stack Overflow dataset, while SentiCR was the highest

for the other three datasets.

Inspired by these three studies, we raise the main research

question that drives this study: How well can pre-trained
Transformer models perform for SA4SE task? Transformer is a

deep neural network architecture based solely on the attention

mechanism. It replaces the most commonly used recurrent

layers in the encoder-decoder architecture with multi-head

self-attention [11]. Currently, Transformer has become the

mainstream architecture of pre-trained models [12]. These pre-

trained models are trained on large corpora to learn universal

language representations and can further be beneficial to

downstream natural language processing (NLP) tasks without

the need to train new models from scratch.

To answer the aforementioned question, we conduct a

large-scale exploratory study. Specifically, we (1) consider a

diverse collection of six datasets (instead of three or four

considered in prior work), (2) compare the effectiveness of

the best performers in prior work [7]–[9] with state-of-the-art

pre-trained Transformer models. This study investigates the

following specific research questions:

• RQ1: How accurate are Transformer models as com-
pared to existing SA4SE tools?

• RQ2: How efficient are Transformer models as compared
to existing SA4SE tools?

To answer the above questions, we compare the accuracy

and efficiency of the best performing SA4SE approaches in

prior studies, against four pre-trained Transformer models.

Prior studies [7]–[9] have highlighted that Stanford CoreNLP,

SentiStrength, SentiStrength-SE, SentiCR, and SentiSD are

the best performers on at least one dataset. For pre-trained

Transformer models, we consider BERT [13], RoBERTa [14],

XLNet [15], and ALBERT [16]. We fine-tune these models

with labeled Software Engineering (SE) specific data for

SA4SE tasks.2 We evaluate the approaches on six datasets: API

reviews (API), Stack Overflow posts (SO), Mobile app reviews

(App), GitHub pull-request and commit comments (GitHub),

1They referred to the dataset as ’Java Libraries’ and it is the Stack Overflow
dataset from Lin et al.’s work [9].

2For brevity, unless otherwise stated, we refer to these fine-tuned pre-trained
models as Transformer models.
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Jira issue comments (Jira), and Gerrit code review comments

(CR).

The experimental results demonstrate that in all the six

datasets, Transformer models, i.e., BERT, RoBERTa, XLNet,

and ALBERT, can achieve better performance than the best

performing SA4SE tools identified in prior studies [7]–[9].

Across these datasets, Transformer models consistently out-

perform previous SA4SE tools by 6.5% to 35.6% in terms of

macro/micro-averaged F1-scores. This accuracy boost comes

with some runtime costs: Transformer models are less effi-

cient than existing SA4SE approaches (except Senti4SD and

Stanford CoreNLP). Still, its runtime cost is not prohibitively

high; it requires 15 seconds to 10 minutes to fine-tune, while

it can predict sentiments of hundreds of text units (documents)

in seconds.

The main contributions of this work are as follows:

1) We are the first to leverage various pre-trained

Transformer-based models for the SA4SE task.

2) We provide a large-scale comparative analysis between

five existing SA4SE tools and four Transformer models

on six SE datasets and demonstrate that Transformer

models perform better than prior specialized SA4SE

tools.

The remainder of this paper is organized as follows. Sec-

tion II introduces related work. Sections III and IV describe

the best performing SA4SE tools identified in prior studies

[7]–[9] and pre-trained Transformer-based models used in this

paper, respectively. Section V elaborates on our methodology

to answer the research questions. We present the results of our

experiments for the two RQs in Section VI. Then we analyze

the threats to validity in Section VII. Finally, we conclude and

present future work in Section VIII.

II. RELATED WORK

In this section, we introduce related work: the first group is

about sentiment analysis for software engineering; the second

group is on pre-trained models for NLP.

Sentiment Analysis for Software Engineering. Previous

research has shown that emotions influence work outcomes

and dynamics, such as task quality, productivity, creativity,

group rapport, user focus, and job satisfaction (c.f. [17]).

On the other side of the coin, work processes and outcomes

influence developer emotions (c.f. [18]). Much research has

been done to investigate aspects of this two-way relationship

between developers’ work and their emotions.

One line of work that has attracted much research interest

is the sentiment analysis of software artifacts, such as bug

reports and commit comments. For example, Guzman et al. [2]

studied sentiments in commit comments in GitHub to analyze

the social factors affecting software development. Villarroel et

al. [4] mined emotional information from mobile apps reviews

to support the release planning activity. To further analyze the

impact of negative code review comments, Ahmed et al. [6]

developed a code-review specific sentiment analysis tool. Fine-

grained emotions have also been studied. Gachechiladze et al.

TABLE I: Sentiment Analysis for Software Engineering Tools

Tool Technique Original Training/Test dataset

NLTK/VADER [25] Lexicon and rule-based Social media texts

Stanford CoreNLP [22] Recursive neural tensor network Movie reviews

SentiStrength [22] Lexicon and rule-based MySpace informal short texts

SentiStrength-SE [5] Lexicon and rule-based Jira issues comments

SentiCR [6] Supervised learning Code review comments

Senti4SD [26] Supervised learning Stack Overflow

Emotxt [23] Supervised learning Stack Overflow and Jira

DEVA [24] Lexical approach Jira issue comments

[19] focus on automatic identification of anger direction (anger

towards self, others, and object) in a collaborative software

development environment. They found that all of the anger

directions are present within the comments from Apache issue

reports [19].

The progress of sentiment analysis research in SE has

promoted the development of corresponding tools. In the

early stage, researchers mainly use NLTK [20], SentiStrength

[21], Alchemy3, and Stanford CoreNLP sentiment analyser

[22] for sentiment polarity classification. By comparing the

performance of general-purpose sentiment analysis tools in the

SE field, Jongeling et al. [3] found that these tools produced

inconsistent annotated labels, and they may not necessarily

agree with each other. Therefore, they claim a need for SE

domain-orientated sentiment analysis tools. Due to the non-

optimal performances of these off-the-shelf sentiment analysis

tools built from the general text, more SE domain-specific

sentiment analysis tools have been introduced. Most of them

focus on the classification of sentiment polarity. Senti4SD

and SentiCR are two examples, and they are supervised

learning-based sentiment analysis tools. The construction of

emotion recognition toolkits for SE text has also drawn much

attention. Emotxt [23], which is an open-source toolkit for

detecting emotions, i.e., love, joy, surprise, anger, sadness,
fear, is trained specifically on the datasets extracted from

Stack Overflow and Jira. DEVA [24], which is specially built

for SE text, is a dictionary-based approach to detect valence

and arousal in text. It can capture individual emotional states

(e.g., excitement, stress, depression, relaxation, and neutrality).

Table I shows the current publicly available SA4SE tools.

Some exploratory studies [7]–[9] are similar to our work,

and they compare the performance of general-purpose and SE-

specific sentiment analysis tools in different datasets. We have

discussed them in Section I. In this work, we want to extend

these studies by comparing the best performing tools identified

in their work against Transformer models.

Pre-trained Models for Natural Language Processing. We

follow Qiu et al. [12] to categorize pre-trained models into two

generations. The first generation of pre-trained models aims to

learn word embeddings [12]. Typical examples are word2vec

[27] and GloVe (Global Vectors for Word Representation) [28].

Many prior SE works, e.g., detection of incoherent comments

[29] and identification of SE-relevant tweets [30], have utilized

word embeddings. One apparent limitation of this kind of word

3This service from IBM was retired in 2017.
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embeddings is that they are context-independent. Regardless

of the context, the same word has the same embedding. As a

consequence, these non-contextual embeddings fail to model

polysemous words [12].

Recently, pre-trained models that learn contextual word

representations and can be fine-tuned for downstream tasks

have become popular [12]. They are the second-generation

pre-trained models. One family is LSTM [31]-based. Among

them, ULMFiT (Universal Language Model Fine-tuning) [32]

and ELMo (Embeddings from Language Models) [33] are two

front-runners. Since the introduction of Transformer architec-

ture [11], a number of pre-trained Transformer-based models

have been proposed (e.g., [13]–[16], [34]); these form another

family, and many of its members have achieved state-of-the-art

performance for a number of downstream NLP tasks.

III. PRIOR SA4SE TOOLS

In this section, we briefly describe details about the

best performing approaches identified by the prior bench-

marking works [7]–[9]: Stanford CoreNLP, SentiStrength,

SentiStrength-SE, SentiCR, and Senti4SD. We refer to them

collectively as the PRIOR group.

Stanford CoreNLP, proposed by Socher et al. [35], is

designed for single-sentence sentiment classification; it can

return a sentiment value and polarity for a sentence. Socher

et al. introduced the Stanford Sentiment Treebank, which

includes fine-grained sentiment labels for 215,154 phrases in

the parse trees. The parse trees consist of 11,855 sentences

extracted from the movie review dataset, initially constructed

by Pang and Lee [36]. Socher et al. also proposed a new

model called Recursive Neural Tensor Network to capture the

compositional effects with higher accuracy. Stanford CoreNLP

is trained with this Recursive Neural Tensor Network on the

Stanford Sentiment Treebank.

SentiStrength is a lexicon-based approach developed by Thel-

wall et al. [21]. As a lexicon-based approach, SentiStrength has

several dictionaries, including both formal terms and informal

texts (such as emoticon, idiom, slang). In these dictionaries,

each term is labeled with a sentiment strength. Based on

these dictionaries and linguistic analysis, given a sentence,

SentiStrength will output two integers: one is for positive
emotion, and the other is for negative emotion. It not only

categorizes the emotional polarity but also gives the strength

of the polarity. The scale for positive emotion is from 1 to 5,

representing not positive to very strong positive; the range for

negative emotion is from -1 to -5, representing not negative

to very strong negative.

SentiStrength-SE, proposed by Islam and Zibran, is a cus-

tomized version of SentiStrength, implemented by adding a

domain-specific dictionary [5]. SentiStrength-SE is also the

first sentiment analysis tool considering SE-specific context,

and it is designed based on in-depth qualitative research.

Specifically, Islam and Zibran first used SentiStrength to detect

sentiment in Jira issue comments. They analyzed 151 Jira issue

comments for which SentiStrength produced wrong outputs.

This analysis was performed to identify the reasons/difficul-

ties that affect the accuracy of SentiStrength. Finally, they

identified 12 such difficulties. They also found that out of all

the difficulties, the domain-specific meanings of words were

the most prevalent. To build a domain dictionary, they first

collected a large dataset of commit messages drawn from 50

open-source projects from GitHub provided by their earlier

work [37]. Then they extracted the lemmatizations of all words

in the dataset. Next, they kept the overlap between these word

lemmatizations and the SentiStrength dictionary of sentiment

words. A total of 716 words remain. Through manual as-

sessments, they further eliminated words that carry neutral

sentiments. Finally, the final word dictionary of SentiStrength-

SE consists of 500 words, of which 167 are positive, and

293 are negative. They also extended the dictionary by adding

new sentiment words and negations. Additionally, contextual

information is considered in SentiStrength-SE.

SentiCR [6] is designed by Ahmed et al., particularly for

code review comments. Based on the characteristics of code

review comments, SentiCR has a suite of data preprocessing

steps, including URL removal and code snippet removal. Sen-

tiCR includes a two-stage negation preprocessing approach.

Ahmed et al. first build a chunk grammar (i.e., a set of

rules indicating how sentences should be chunked) for NLTK
RegexpChunkParser to identify negation phrases. Second, they

modify all the verbs, adjectives, and adverbs in a negation

phrase identified by the chunker by prepending not to it

[6]. After generating feature vectors using TF-IDF, eight

supervised classifiers are evaluated. They also use 10-fold

cross-validation to validate each algorithm. GBT (Gradient

Boosting Tree) [38] demonstrates the highest precision, recall,

and accuracy among all the eight used algorithms. Thus, by

default, the supervised classifier in SentiCR is GBT. The

original SentiCR is trained to classify a code review comment

as either negative or non-negative.

Senti4SD is another supervised learning-based tool. The

largest difference between Senti4SD and previous SE-specific

tools is how it generates feature vectors. Senti4SD [26] uti-

lizes three different features based on (1) Generic sentiment

lexicons. It uses SentiStrength lexicons; (2) Keywords (n-

gram extracted from the dataset). It primarily uses uni-gram

and bi-gram. The value of each keyword feature corresponds

to its number of occurrences. In addition to uni-gram and

bi-gram, it also includes other keyword features, e.g., total

occurrences of uppercase words, and slang expressions for

laughter; (3) Word representation in a distributional semantic

model (DSM) specifically trained on Stack Overflow data.

DSM uses the CBOW architecture implemented by word2vec

[27]. Each Stack Overflow document (i.e., answers, questions,

and comments) is represented as the vector sum of all the

vectors of words in the document. Besides, it calculates four

prototype vectors, namely, p pos, p neg, p neu, and p subj,
respectively. p pos is the sum of all the word vectors in each

document, which have positive polarity in the SentiStrength

lexicon dictionary. Similarly, by summing up all the nega-
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tive/neutral word vectors in the document, we have p neg and

p neu. p subj is the sum of p pos and p neg. Using these

four objective vectors for a document, Senti4SD calculates

the similarity scores between document vectors to get the

semantic features. Finally, based on the features mentioned

above, Senti4SD is trained to distinguish sentiment polarities

of text units by using Support Vector Machines (SVM).

IV. PRE-TRAINED TRANSFORMER-BASED MODELS

In this section, we briefly introduce the four pre-trained

Transformer-based models, i.e., BERT, RoBERTa, XLNet, and

ALBERT. We refer to these models collectively as the PTM

(Pre-trained Transformer Model) group.

BERT has been designed to learn pre-trained contextual word

representations from unlabeled texts [13]. Its architecture is

a multi-layer bidirectional Transformer encoder. It learns the

contextual word representations by optimizing for two tasks.

The first task is masked language model (MLM); MLM ran-

domly masks some words from the input text, and the task is to

predict the masked words based on their contexts (i.e., words

appearing before and after each of the masked words). The

second task is next sentence prediction (NSP); NSP predicts

if one sentence follows another. The original paper provides

two implementation versions: basic-size (BERTBASE) and

large-size (BERTLARGE). BERTBASE has 12 layers, a

hidden layer size of 768, 12 self-attention heads, and 110M

parameters. In comparison, BERTLARGE has 24 layers, a

hidden layer size of 1,024, 16 self-attention heads, and 340M

parameters. Given the large number of parameters, fine-tuning

BERTLARGE needs more time and consumes more memory

than BERTBASE . Thus, in this work, we use BERTBASE .

Based on the experimental results reported in the original

paper, BERTLARGE usually outperforms BERTBASE .

RoBERTa (Robustly optimized BERT approach) is reported

to achieve state-of-the-art results on the benchmarks GLUE,

RACE, and SQuAD when Liu et al. [14] released it. In

their paper, Liu et al. presented a replication study of BERT

pre-training, which measures the impact of critical hyper-

parameters and training data sizes. By modifying the pre-

training steps of BERT, RoBERTa can achieve substantially

better performance than BERT. Regarding the modifications,

firstly, RoBERTa uses larger mini-batch sizes to train the

model for a longer time over more data. Secondly, RoBERTa

removes the NSP loss in BERT, and it trains on longer

sequences. Moreover, RoBERTa is trained with dynamic mask-

ing: the masking pattern will be generated every time a

sequence is fed to the model.

XLNet [15] combines the strengths of autoregressive (AR)

language modeling and autoencoding (AE) to deal with their

individual limitations. XLNet is capable of learning contextual

information by maximizing the expected log-likelihood of a

sequence of words considering all permutations. By integrating

the segment recurrence mechanism and relative encoding

scheme of Transformer-XL [34], XLNet can produce a better

performance, especially for long texts. It achieves the lowest

TABLE II: Datasets

dataset # doc # (%) positive # (%) neutral # (%) negative

API 4,522 890 (19.7) 3,136 (69.3) 496 (11)

SO 1,500 131 (8.7) 1,191 (79.4) 178 (11.9)

App 341 186 (54.5) 25 (7.3) 130 (38.1)

GitHub 7,122 2,013 (28.3) 3,022 (42.4) 2,087 (29.3)

Jira 926 290 (31.3) - 636 (68.7)

# doc # (%) non-negative # (%) negative

CR 1,600 1,202 (75.1) 398 (24.9)

error rates for the IMDB dataset, and it outperforms BERT on

20 tasks, including sentiment analysis.

ALBERT [16] is a lite version of BERT, and it is proposed

to address the GPU/TPU memory limit and long training time

issues of BERT. It applies two parameter-reduction techniques,

i.e., a factorized embedding parameterization, and cross-layer

parameter sharing. The application of these two techniques can

improve efficiency by decreasing the number of BERT param-

eters to a great extent without seriously affecting performance.

One thing worth mentioning is that although ALBERT has

fewer parameters than BERT, it has a larger architecture; thus,

it is computationally more expensive than BERTLARGE .

ALBERT has been shown to outperform BERTLARGE on

the GLUE, RACE, and SQuAD benchmarks.

V. METHODOLOGY

This section first describes the six datasets used in this

work, and defines the sentiment analysis task based on the

polarity labels in the datasets. Then, we elaborate on the

implementations of all the considered approaches. Lastly, we

describe the relevant evaluation metrics and settings.

A. Datasets

In this comparative study, we make use of six publicly

available datasets with annotated sentiment polarities. Table II

shows the detailed statistics of the six datasets, including the

total number of documents in a dataset (# doc) and the number

(and percentage) of documents with one of the sentiment

polarities (e.g., # (%) positive, # (%) neutral, # (%) negative).

• API reviews (API) [39]. It includes 4,522 sentences from

1,338 Stack Overflow posts. This dataset contains both API

aspects and the polarities of provided opinions, i.e., positive,

negative, and neutral), curated by Uddin and Khomh.

• Stack Overflow posts (SO) [9]. It consists of 1,500

sentences. Lin et al. [9] obtained this dataset from the

Stack Overflow dump dated July 2017. They pick discussion

threads that (i) are tagged with Java, and (ii) contain one of

the following words: library, libraries, or API(s). Then, they

randomly selected 1,500 sentences and manually labeled

their sentiment polarities. This dataset is similar to the

API dataset. However, they are significantly different on

sentiment polarity distribution: SO dataset has similar dis-

tribution about the positive and negative polarity. However,

in the API dataset, the sentences with a positive sentiment

are nearly twice those with a negative sentiment.
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• Mobile app review dataset (App) [9]. This dataset has 341

reviews randomly chosen by Lin et al. from the dataset of

3k reviews formerly provided by Villarroel et al. [4]. Con-

sidering a 95% confidence level and 5% confidence interval,

these 341 reviews is a statistically significant sample of the

3k reviews. When performing random selection, the propor-

tions of reviews belonging to these four categories, namely

bug reporting, a suggestion for new features, request for
improving non-functional requirements (e.g., performance of
the app), and other, have been retained in the new dataset.

• GitHub pull-request and commit comments (GitHub)
[10]. It consists of 7,122 sentences from GitHub pull-request

and commit comments. Novielli et al. conducted an iterative

extraction to obtain the annotated text units from the dataset

provided by Pletea et al. [40].

• Jira issue comments (Jira) [9]. This dataset has been

used in several prior studies (e.g., [23], [41]) and it is

previously provided by Ortu et al. [42] with four emotions

labelled: love, joy, anger, and sadness. Lin et al. [9] assign

a positive polarity to the sentences labelled with love and

joy, a negative polarity to the sentences labelled with anger
and sadness. It does not contain any neutral polarity and is

a binary-class dataset.

• Code review comments (CR) [6]. It is released with

SentiCR and is a binary-class dataset, including negative

and non-negative comments. The comments are collected

from 20 popular open-source projects that practice tool-

based code reviews supported by the same tool (i.e., Gerrit)

[6]. Unlike the other datasets, the unit of text in this dataset

is not a sentence, but rather a document (whereas each

document can include multiple sentences). Therefore, for

SentiStrength, SentiStrength-SE, and Senti4SD, we concate-

nate these sentences into one long sentence to be able to use

these tools.

We considered all the three datasets used in Lin et al.’s

benchmarking work [9] – mobile app reviews (App), Stack

Overflow posts (SO), and Jira issue comments (Jira). We

include another three datasets (i.e., GitHub, API, and CR)

which have diverse characteristics in at least four aspects. First,

the added three datasets were constructed from various repos-

itories: pull-request and issue comments from GitHub [10];

API reviews from Stack Overflow [39]; and Gerrit code review

comments from open-source projects [6]. Second, the sizes of

the three datasets differ significantly. For example, the GitHub

dataset is more than 20 times larger than the mobile app

reviews. Third, among the three datasets, the GitHub dataset is

balanced in the number of positive, neutral, and negative text

units, while the other two are imbalanced. Fourth, different

from the other two, the code review comment dataset only

has two sentiment polarities: non-negative and negative.

For a given text unit, each approach will predict its sen-

timent polarity label. According to the number of sentiment

polarities in a dataset, we formulate the problem as a binary or

ternary text classification task. Specifically, the classification

tasks for the datasets Jira and CR correspond to binary

classification tasks. Both datasets have two polarity labels:

positive and negative for Jira; negative and non-negative for

CR. For the other four datasets, the classification problems are

formulated as ternary-class classification tasks as they have

three polarity labels, i.e., positive, neutral, and negative.

B. Implementations

SA4SE Tools: For Stanford CoreNLP4, we used its Python

wrapper5. Given a sentence, Stanford CoreNLP returns the

sentiment polarity with its corresponding sentiment value

(Very negative=0, Negative=1, Neutral=2, Positive=3, Very
positive=4). As Stanford CoreNLP gives a sentiment value

and polarity to individual sentences, when a text unit in some

datasets has more than one sentence, we calculate the average

sentiment value of all sentences for the text unit. If the average

sentiment value of a text unit is greater than 2, we assign it

a positive polarity; if the value is less than 2, we assign it

a negative polarity; otherwise, we assign it a neutral polarity

(c.f. [9]).

For SentiStrength6 and SentiStrength-SE7, following Lin et

al., we sum up the two sentiment strength scores returned by

the tool to get the overall polarity for a sentence. If the total

score is greater than 0, we assign a positive polarity to the

whole text unit; if the total score is less than 0, we assign a

negative polarity, and a neutral polarity is for the text unit that

has a total score of 0. For the code review comment dataset,

we need to distinguish between non-negative and negative;

hence, if the overall score is less than 0, we assign negative
to the text unit; otherwise, we assign non-negative to it.

SentiCR8 only classifies two polarities, i.e., negative and

non-negative. We re-train it on each dataset to classify three

polarities, i.e., positive, neutral, and negative. We only changed

the training dataset and kept all the parameters as default.

For Senti4SD, we use the classifier pre-trained on Stack

Overflow dataset9. Senti4SD can classify three polarities, i.e.,

positive, neutral, and negative. As the code review comment

dataset only has negative and non-negative polarities, we

assign both the positive and neutral as non-negative.

Transformer Models. Many existing Transformer models are

pre-trained for general domains. For instance, a combination

of BooksCorpus [43] and English Wikipedia is used as all or

part of the BERT and XLNet pre-training corpus. To build a

sentiment classification model, we add a feed-forward dense

layer and softmax activation function on top of each model.

A certain pre-trained model’s parameters have been reused

as a starting point. We feed our SE training data to a pre-

trained Transformer model’s tokenizer and get the required

formatted data; Then, we use the formatted data to train the

pre-trained model further to get a fine-tuned model. Finally, we

test it on the held-out test data. As found in BERT paper [13],

4http://stanfordnlp.github.io/CoreNLP/
5https://github.com/smilli/py-corenlp/
6http://sentistrength.wlv.ac.uk/download.html
7https://laser.cs.uno.edu/Projects/Projects.html
8https://github.com/senticr/SentiCR
9https://github.com/collab-uniba/Senti4SD
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TABLE III: Models

Architecture Used Model Parameters Layers Hidden Heads

BERT bert-base-cased 110M 12 768 12

RoBERTa roberta-base 125M 12 768 12

XLNet xlnet-base-cased 110M 12 768 12

ALBERT albert-base-v1 11M 12 768 12

the following values of hyper-parameter for BERT fine-tuning

procedure work well across all tasks: (1) Batch size: 16, 32;

(2) Number of epochs: 2, 3, 4; (3) Learning rate (Adam): 5e-

5, 3e-5, 2e-5. For all these models, we run them in 4 epochs

with a batch size of 16. Moreover, we set the learning rate to

2e-5. We used AdamW optimizer.

Table III lists the models with their names in the Hugging-

face Transformers library [44] and default configurations.

C. Evaluation Metrics

Following the previous work [8], we report the precision, re-

call, and F1-score of each approach for each polarity. We also

report the macro- and micro-averaged metrics to show overall

multi-classification performances. The formula to calculate

P (precision), R (recall) and F1 (F1-score) are as follows:

P = TP
TP+FP ,R = TP

TP+FN , and F1 = 2 · P ·R
P+R . TP refers

to the number of true positives (text units correctly classified

as positive), FP refers to the number of false positives (text

units mistakenly classified as positive), and FN refers to false

negatives (text units mistakenly classified as negative).

The macro-averaged metric regards the measurement of

each sentiment class equally. It takes precision, recall, and

F1-score of each class and then averages them. The micro-

averaged metric calculates measurement over all data points

in all classes, and tends to be mainly influenced by the

performance of the majority class [8]. The formulas for macro-

and micro-averaged precision (P) are shown below:

Pmacro =

∑k
i=1 Pi

k
(1)

Pmicro =

∑k
i=1 TPi

∑k
i=1 TPi +

∑k
i=1 FPi

(2)

Pmacro and Pmicro represent macro- and micro-averaged

precision respectively. Pi, TPi and FPi represent the preci-

sion, number of true positives, number of false positives for

the ith class respectively. k denotes the number of sentiment

polarity classes. We can calculate macro- and micro-averaged

recall and F1, denoted as Rmacro, Rmicro, F1macro, F1micro,

similarly. We consider a model is better than another only

when it achieves higher values of both F1macro and F1micro.

D. Experimental Setting

Following Novielli et al. [8], we split each dataset into

a training set (70%) and a test set (30%). Since SentiCR

is originally designed for binary classification, we re-train

it using the training set and test it on the test set for three

classes. For Senti4SD, SentiStrength, and SentiStrength-SE,

they do not need re-training. Concerning the four pre-trained

Transformer models, we fine-tune them with the training set

and then evaluate them on the test set.

VI. EVALUATION

In this section, we report the performance of the nine

sentiment analysis approaches on the six datasets described

in Section V-A. For each dataset, we highlight the best

performance in terms of the two main metrics (i.e., macro- and

micro-averaged F1-scores) in bold. We answer the research

questions based on the experimental results as follows.

A. RQ1: How accurate are Transformer models as compared
to existing SA4SE tools?

To answer RQ1, we compare all the nine approaches in

both the PRIOR and PTM groups. Tables IV and V present

the performance of the nine approaches on the six datasets.

API and SO Datasets: Similar to the SO dataset, the API

dataset is constructed from Stack Overflow posts. Thus, we

look at the results of both datasets together. In terms of

both macro- and micro-averaged F1, the approaches in PTM

group outperform those in the PRIOR group. For the API

dataset, The best performing PTM approach (ALBERT) can

achieve macro- and micro-averaged F1-scores of 0.82 and

0.89, respectively. On the other hand, the best performing

PRIOR approach (SentiCR) can only achieve macro- and

micro-averaged F1-scores of 0.66 and 0.82, respectively. We

observe a similar finding for the SO dataset.

App Dataset: We find that all the approaches perform rela-

tively poorly on the App dataset. One potential reason is that

this dataset is highly imbalanced and quite small; there are

only a few text units with a neutral sentiment. Due to this

limited number of text units for training, the approaches that

have been trained on this dataset (i.e., all PTM approaches

and SentiCR) have worse performance than the lexicon-based

approaches (i.e., SentiStrength and SentiStrength-SE) for the

neutral sentiment. Still, overall, we observe that approaches in

the PTM group outperform those in the PRIOR group.

GitHub Dataset: Among all the six datasets, GitHub is the

largest and most balanced one. The four approaches from the

PTM group achieved similar performance: BERT, RoBERTa,

and XLNet produce the same macro- and micro-averaged F1-

scores; ALBERT performs slightly worse, 0.03 lower than

the other three approaches. Their performance is better than

that for approaches in the PRIOR group. In the PRIOR

group, SentiCR is the best performer, with SentiStrength-SE

being a close second. The other three approaches produce

substantially lower macro- and micro-averaged F1-scores.

Stanford CoreNLP has the worst performance, which shows

that Stanford CoreNLP has poor generalization of SE data

across different repositories.

Jira Dataset: For the Jira dataset, we found that all the PTM

approaches perform well with high macro- and micro-averaged

F1-scores (≥ 0.96). However, in the PRIOR group, only Sen-

tiCR achieves macro- and micro-averaged F1-scores greater

than 0.90. The other approaches in the PRIOR group have
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TABLE IV: Results for API, SO, App, and GitHub Datasets

Dataset Approach Positive Neutral Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1 P R F1

API

Stanford CoreNLP 0.47 0.41 0.44 0.85 0.60 0.71 0.22 0.66 0.33 0.51 0.56 0.49 0.57 0.57 0.57

SentiStrength 0.44 0.45 0.45 0.81 0.77 0.79 0.44 0.45 0.45 0.55 0.57 0.56 0.68 0.68 0.68

SentiStrength-SE 0.59 0.33 0.42 0.77 0.91 0.83 0.47 0.26 0.33 0.61 0.50 0.53 0.73 0.73 0.73

SentiCR 0.85 0.52 0.65 0.82 0.98 0.89 0.81 0.31 0.45 0.83 0.61 0.66 0.82 0.82 0.82
Senti4SD 0.56 0.33 0.41 0.76 0.93 0.84 0.44 0.10 0.17 0.59 0.45 0.47 0.73 0.73 0.73

BERT 0.85 0.72 0.78 0.92 0.95 0.93 0.73 0.73 0.73 0.83 0.80 0.81 0.89 0.89 0.89
RoBERTa 0.78 0.79 0.78 0.93 0.93 0.93 0.72 0.70 0.71 0.81 0.81 0.81 0.88 0.88 0.88

XLNet 0.75 0.75 0.75 0.91 0.91 0.91 0.63 0.59 0.61 0.76 0.75 0.76 0.85 0.85 0.85

ALBERT 0.88 0.77 0.82 0.92 0.96 0.94 0.71 0.68 0.70 0.84 0.80 0.82 0.89 0.89 0.89

SO

Stanford CoreNLP 0.23 0.42 0.30 0.92 0.69 0.79 0.34 0.82 0.48 0.50 0.64 0.52 0.68 0.68 0.68

SentiStrength 0.25 0.42 0.32 0.89 0.80 0.84 0.40 0.52 0.46 0.52 0.58 0.54 0.74 0.74 0.74

SentiStrength-SE 0.31 0.13 0.19 0.83 0.94 0.89 0.44 0.18 0.26 0.53 0.42 0.44 0.80 0.80 0.80

SentiCR 0.48 0.32 0.38 0.90 0.90 0.90 0.45 0.55 0.49 0.61 0.59 0.59 0.82 0.82 0.82

Senti4SD 0.50 0.34 0.41 0.85 0.96 0.90 0.75 0.14 0.23 0.70 0.48 0.51 0.83 0.83 0.83

BERT 0.65 0.63 0.64 0.94 0.95 0.94 0.73 0.68 0.71 0.77 0.75 0.76 0.90 0.90 0.90
RoBERTa 0.57 0.76 0.65 0.96 0.92 0.94 0.78 0.82 0.80 0.77 0.83 0.80 0.90 0.90 0.90
XLNet 0.50 0.76 0.60 0.96 0.90 0.93 0.74 0.84 0.79 0.73 0.83 0.77 0.88 0.88 0.88

ALBERT 0.71 0.32 0.44 0.90 0.95 0.92 0.61 0.61 0.61 0.74 0.63 0.66 0.86 0.86 0.86

App

Stanford CoreNLP 0.77 0.68 0.72 0.14 0.43 0.21 0.69 0.54 0.61 0.53 0.55 0.51 0.61 0.61 0.61

SentiStrength 0.75 0.90 0.82 0.12 0.29 0.17 0.73 0.30 0.42 0.53 0.49 0.47 0.64 0.64 0.64

SentiStrength-SE 0.73 0.81 0.77 0.15 0.57 0.24 0.91 0.27 0.42 0.60 0.55 0.48 0.60 0.60 0.60

SentiCR 0.86 0.83 0.84 0.00 0.00 0.00 0.68 0.81 0.74 0.51 0.55 0.53 0.77 0.77 0.77
Senti4SD 0.72 0.85 0.78 0.12 0.29 0.17 0.65 0.30 0.41 0.50 0.48 0.45 0.61 0.61 0.61

BERT 0.86 0.95 0.90 0.00 0.00 0.00 0.87 0.89 0.88 0.58 0.61 0.59 0.86 0.86 0.86

RoBERTa 0.95 0.92 0.93 0.00 0.00 0.00 0.84 1.00 0.91 0.60 0.64 0.61 0.88 0.88 0.88
XLNet 0.87 0.98 0.92 0.00 0.00 0.00 0.86 0.81 0.83 0.57 0.60 0.58 0.85 0.85 0.85

ALBERT 0.91 0.86 0.89 0.00 0.00 0.00 0.72 0.92 0.81 0.54 0.59 0.57 0.83 0.83 0.83

GitHub

Stanford CoreNLP 0.61 0.36 0.45 0.44 0.40 0.42 0.40 0.61 0.48 0.48 0.46 0.45 0.45 0.45 0.45

SentiStrength 0.65 0.66 0.66 0.60 0.58 0.59 0.63 0.66 0.65 0.63 0.63 0.63 0.63 0.63 0.63

SentiStrength-SE 0.87 0.85 0.86 0.77 0.86 0.81 0.82 0.71 0.76 0.82 0.81 0.81 0.81 0.81 0.81

SentiCR 0.88 0.86 0.87 0.78 0.91 0.84 0.86 0.68 0.76 0.84 0.82 0.82 0.83 0.83 0.83
Senti4SD 0.79 0.84 0.82 0.69 0.86 0.76 0.82 0.47 0.60 0.77 0.73 0.73 0.74 0.74 0.74

BERT 0.92 0.95 0.93 0.90 0.92 0.91 0.93 0.87 0.90 0.92 0.91 0.92 0.92 0.92 0.92
RoBERTa 0.93 0.96 0.94 0.91 0.92 0.92 0.93 0.89 0.91 0.93 0.92 0.92 0.92 0.92 0.92
XLNet 0.90 0.97 0.94 0.94 0.89 0.91 0.91 0.92 0.91 0.92 0.93 0.92 0.92 0.92 0.92
ALBERT 0.91 0.93 0.92 0.85 0.94 0.89 0.94 0.78 0.85 0.90 0.88 0.89 0.89 0.89 0.89

macro-averaged F1-scores lower than 0.6, and micro-averaged

F1-scores lower than 0.79. Two noteworthy facts are that

SentiStrength outperforms SentiStrength-SE by 20% in terms

of the micro-averaged F1-score. Also, Stanford CoreNLP

outperforms Senti4SD by 31.8%. This shows that SE-specific

sentiment analysis tools do not always outperform general-

purpose ones in SE datasets. The performance of different

approaches from the PRIOR group gives us another insight:

SentiStrength and SentiStrength-SE are both lexicon-based and

do not need training. They outperform Stanford CoreNLP and

Senti4SD, which have been trained in other datasets. SentiCR,

which has been re-trained in this Jira dataset, achieves the best

result in the PRIOR group. This highlights that the lexicon-

based approaches may be better than supervised ones (if

training is not done on a suitable dataset).

CR Dataset: For the dataset CR, all the approaches per-

form better in detecting non-negative polarity than negative

polarity, with each PTM approach outperforming all PRIOR

approaches. Also, all the approaches trained on the CR dataset,

including all PTM approaches and SentiCR outperforms the

other four non-CR specific tools (i.e., their training and

construction did not involve CR-datasets).

Overall: We found that the best and worst-performing ap-

proaches differ for different datasets. Also, no approach can

achieve the best performance on all datasets. For example,

RoBERTa achieves the highest micro-averaged F1-score while

SentiStrength-SE has the lowest score on the App dataset.

On API dataset, BERT and ALBERT achieve the highest

micro-averaged F1-score, while Stanford CoreNLP has the

lowest score. Also, the performance gap between the best and

worst performance on different datasets varies. The difference

between micro-averaged F1-scores ranges from 32.4% (on

SO) to 122.7% (on Jira). For macro-averaged F1-scores, the

difference is from 35.6% (on App) to 139% (on Jira).
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TABLE V: Results for Jira and CR Datasets

Dataset Approach Positive Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1

Jira

Stanford CoreNLP 0.83 0.50 0.62 0.96 0.63 0.76 0.60 0.38 0.46 0.58 0.58 0.58

SentiStrength 0.95 0.91 0.93 0.99 0.72 0.83 0.65 0.54 0.59 0.78 0.78 0.78

SentiStrength-SE 0.98 0.85 0.91 0.99 0.54 0.70 0.66 0.46 0.54 0.65 0.65 0.65

SentiCR 0.96 0.81 0.88 0.90 0.98 0.94 0.93 0.89 0.91 0.92 0.92 0.92
Senti4SD 0.90 0.86 0.88 1.00 0.21 0.34 0.63 0.35 0.41 0.44 0.44 0.44

BERT 0.99 0.96 0.97 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98
RoBERTa 0.98 0.96 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.97 0.97 0.97

XLNet 0.98 0.96 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.98
ALBERT 0.97 0.94 0.95 0.97 0.98 0.98 0.97 0.96 0.96 0.97 0.97 0.97

Dataset Approach Non-negative Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1

CR

Stanford CoreNLP 0.91 0.55 0.69 0.37 0.83 0.51 0.64 0.69 0.60 0.62 0.62 0.62

SentiStrength 0.81 0.82 0.82 0.41 0.40 0.41 0.61 0.61 0.61 0.72 0.72 0.72

SentiStrength-SE 0.80 0.94 0.86 0.57 0.25 0.35 0.68 0.59 0.60 0.77 0.77 0.77

SentiCR 0.87 0.83 0.85 0.54 0.62 0.58 0.71 0.73 0.72 0.78 0.78 0.78
Senti4SD 0.78 0.97 0.86 0.60 0.16 0.25 0.69 0.56 0.56 0.77 0.77 0.77

BERT 0.94 0.87 0.90 0.67 0.83 0.74 0.80 0.85 0.82 0.86 0.86 0.86

RoBERTa 0.92 0.93 0.92 0.76 0.74 0.75 0.84 0.83 0.84 0.88 0.88 0.88
XLNet 0.87 0.95 0.91 0.78 0.54 0.64 0.82 0.75 0.77 0.85 0.85 0.85

ALBERT 0.90 0.84 0.87 0.59 0.72 0.65 0.75 0.78 0.76 0.81 0.81 0.81

TABLE VI: Comparison between the Best Performers in the PRIOR and PTM Groups

Metric Group API SO App GitHub Jira CR

Macro-avg F1
Best PRIOR 0.66 0.59 0.53 0.82 0.91 0.72

Best PTM 0.82 0.80 0.61 0.92 0.98 0.84

Improvement 24.2% 35.6% 15.1% 12.2% 7.7% 16.7%

Micro-avg F1
Best PRIOR 0.82 0.83 0.77 0.83 0.92 0.78

Best PTM 0.89 0.90 0.88 0.92 0.98 0.88

Improvement 8.5% 8.4% 14.3% 10.8% 6.5% 12.8%

Among all the approaches in the PRIOR group, we found

that SentiCR achieves the best performance on five out of

six datasets except SO. Also, Stanford CoreNLP performs

the worst on five out of six datasets except on Jira. Among

the approaches in the PTM group, we found that RoBERTa

achieves the best performance on four datasets, i.e., App,

GitHub, SO, and CR. ALBERT performs the worst on App,

GitHub, SO, and CR, but it is the best performer on API.

We also observed that all the PTM approaches outperform

PRIOR approaches up to 35.6% in terms of macro- and micro-

averaged F1-scores (see Table VI). This demonstrates the

effectiveness of the PTM approaches.

RQ1 Main Findings: The Transformer models outper-

form the prior SA4SE tools consistently across the six

datasets, although the best performing model differs

across different datasets. The improvements achieved

by the Transformer models range from 6.5% to 35.6%

in terms of macro- and micro-averaged F1-scores.

B. RQ2: How efficient are Transformer models as compared
to existing SA4SE tools?

The time efficiency of SA4SE approaches can be a concern

in practice. Thus, we report the training (fine-tuning, for

PTM approaches) and prediction time of all the approaches.

Prediction time covers the time from processing the data

to output the predicted label. Here, we provide a manual

estimation of the exact prediction time of SentiStrength and

SentiStrength-SE as they use a graphical user interface.

We run all the approaches on a desktop computer with

Nvidia GeForce RTX 2080 Ti and Intel(R) Core(TM) i7-

9700K CPU @ 3.60GHz. The PTM group runs with both

GPU and CPU, which the PRIOR group only uses CPU.

All approaches, except for SentiStrength, are running with

Ubuntu 18.04.4 LTS. SentiStrength runs on a Windows 10

virtual machine on the Ubuntu system, because only its .exe

is available online.

In Table VII, we report: the training (fine-tuning) time (in

seconds) for each training set; and the prediction time (in

seconds) on each test set. For approaches in the PTM group,

in terms of both fine-tuning and prediction time, XLNet takes
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TABLE VII: Training (or fine-tuning) and prediction time (seconds)

Approach API SO App GitHub Jira CR

Train Pred Train Pred Train Pred Train Pred Train Pred Train Pred

BERT 212.61 8.17 68.18 2.69 15.80 0.63 328.79 13.01 43.39 1.64 73.65 3.06

RoBERTa 215.02 7.87 71.77 2.62 15.91 0.59 338.64 12.42 43.78 1.61 76.35 2.91

XLNet 375.28 18.40 126.15 6.14 28.01 1.39 590.44 29.04 26.82 3.77 154.89 9.22

ALBERT 199.76 7.95 66.74 2.64 14.91 0.61 315.45 12.55 40.81 1.62 72.10 2.91

SentiCR 74.85 1.79 5.31 0.51 0.96 0.17 137.32 3.44 0.72 0.33 3.80 0.86

Senti4SD - 48.81 - 31.11 - 23.59 - 63.95 - 27.88 - 31.62

Stanford CoreNLP - 283.39 - 28.63 - 11.29 - 418.65 - 11.89 - 280.59

SentiStrength - <1 - <1 - <1 - <1 - <1 - <1

SentiStrength-SE - 1.69 - <1 - <1 - 3.22 - <1 - <1

the most time (approximately double the time used by the

other three approaches). For the approaches in the PRIOR

group, in terms of prediction time, Stanford CoreNLP is the

most expensive and SentiCR runs the fastest. Generally, the

prediction time used by Transformer models is two times more

than that of SentiStrength, SentiStrength-SE, and SentiCR.

However, it is less than 50% of the time used by Senti4SD

and Stanford CoreNLP.

RQ2 Main Findings: In general, training (fine tuning)

is more expensive than prediction. The time cost for

fine-tuning the Transformer models ranges from 15

seconds to 10 minutes, depending on the datasets used.

In terms of prediction time, all approaches make pre-

dictions for up to hundreds of text units (documents)

within seconds. The Transformer models cost less than

50% of Senti4SD and Stanford CoreNLP to make

predictions, but cost two times more than the time

needed by SentiCR, SentiStrength and SentiStrength-

SE.

VII. DISCUSSION

This section presents the lessons learned from our experi-

ments and discusses threats to validity.

A. Lessons Learned

Fine-tuning pre-trained Transformer-based models is
promising for SA4SE. Lin et al. [9] mentioned that no prior

SA4SE tool is ready for real usage of identifying sentiment

expressed in SE data yet. We get similar results when applying

the same approach (i.e., Stanford CoreNLP) to Stack Overflow

posts (i.e., SO dataset). On the other hand, we found that

even the worst-performing Transformer model (i.e., ALBERT)

achieves 0.66 in terms of macro-averaged F1-score, which

outperforms Stanford CoreNLP by 27%. The micro-averaged

F1-scores produced by the Transformer models range from

0.86 to 0.90. The promising effectiveness of Transformer-

based approaches has also been observed on the other five

datasets. Although there is no gold standard or concrete

thresholds of various evaluation metrics to decide whether

a SA4SE tool can be put into real use, our experiment

results show that the Transformer-based approach is more

ready than the existing techniques for sentiment analysis in

SE. Thus, we encourage researchers to consider the simply

fine-tuning pre-trained Transformer-based approaches as the

baseline in future work. Moreover, we advocate inventing

more advanced Transformer-based models to make SE-specific

sentiment analysis tools more practical.

Specific training (or fine-tuning) can boost performance.

The approaches can be divided into two groups based on

whether they are trained (or fine-tuned) on specific datasets

or not. We fine-tuned all the pre-trained Transformer models

and trained SentiCR for each dataset. Based on our results,

we found that all the approaches that have been trained (or

fine-tuned) on SE datasets outperform those that have not been

trained (or fine-tuned) across all the six datasets. Moreover, we

find that Senti4SD, which is designed based on Stack Overflow

data [26], performs the best for API and SO datasets. These

indicate that a tool trained on the same data source can perform

better for the same or similar data sources.

Challenges in assigning sentiment labels. Previous work [9]

shows that even human raters have more than 18% disagree-

ments on the same sentences as sentiment identification may

be subjective. We also observed that it is hard to determine the

sentiment labels of some sentences. For example, the sentence

“It’s always sad to see a reference like that go, but it was
probably a good move.” is labeled as negative. However, part

of it (i.e., “it was probably a good move”) should be considered

as positive. Thus, there may be a need to introduce additional

labels, e.g., mixed sentiment, or to go more fine-grained (i.e.,

attaching sentiment labels to phrases instead of sentences).

Customized solutions may boost performance further. We

also found that no approach can always achieve the best

performance on all six datasets. It indicates that customization

of the technical design is also required in future work. It would

be interesting to extend the current Transformer-based models

to consider the specific properties of the SE datasets that we

have.

Composition of different solutions may boost performance
further. We find that some sentences can only be assigned

correct sentiment labels by the (generally) under-performing

SA4SE solution. To illustrate this, we conducted a brief error
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XLNet Correct Predictions

85286 1681

SentiCR Correct Predictions

Fig. 1: Venn Diagram

TABLE VIII: Prediction Examples

Sentence Label XLNet SentiCR

Yes, it would be really cool if you could
update the wiki. But don’t forget to say it
will only work from version 1.4.0 forward!”

Positive Positive Negative

Thanks for your comments and tests! (Ap-
tana is driving me nuts, I’m currently
searching for another IDE)

Positive Negative Positive

Looks good. Mind if I add a CityHash
implementation in here?

Neutral Positive Neutral

Strange indentation here Neutral Negative Neutral

Pretty simple script for a TBC boss I say. I
wonder who did it originally...

Negative Neutral Negative

If you mean #any instance, you were better
off not knowing. It’s a nasty code smell.

Negative Negative Neutral

analysis on the largest GitHub dataset to help understand the

different performances of different approaches. In total, we

have 2,137 sentences in the test set. We focus on comparing the

best performing approaches from the PRIOR and PTM groups,

i.e., SentiCR and XLNet. Figure 1 depicts the number of the

correct predictions produced by the two approaches. Among

all the 2,137 sentences, XLNet and SentiCR correctly predict

1,967 (92%) and 1,766 (82%) sentences; among them, 1,681

(78%) are in common. From the Venn diagram, we find that

although SentiCR performs worse (in general) than XLNet, for

85 sentences, it outperforms SentiCR. Table VIII shows some

examples where one of the approaches fails, but the other is

successful. Thus, by composing many different tools, we can

boost the performance further. As future work, we want to

explore the possibility of combining all the existing solutions

for a higher accuracy. Table VIII shows some examples of

sentences from the GitHub dataset with the prediction results

produced by XLNet and SentiCR. For each example, one of

the two approaches makes a wrong prediction.

B. Threats to Validity

One potential threat to internal validity relates to errors that

we may have made in our experiments. We have also released

a replication package10 for others to check and extend.

10https://github.com/soarsmu/SA4SE

Threats to external validity are related to the generalizability

of our research and experiments. We consider six sentiment

classification datasets, larger than the datasets considered in a

closely related work [9]. These six datasets are diverse from

several aspects, e.g., scale, type of software artifacts, class

distribution, etc. Our experimental setting follows Novielli et

al. [8], for each dataset, uses 70% for training (or fine-tuning)

and 30% for testing. In the future, we plan to employ k-fold

cross validation, which is a more rigorous evaluation method.

Threats to construct validity are related to the suitability of

our evaluation metrics and quality of manually-labeled datasets

that we use. Precision, recall, and F1-score are widely used to

evaluate SA4SE solutions [8], [10], [39]. As we make use of

the publicly available datasets used in prior works, we inherit

the latter threat from the prior studies.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have conducted an extensive comparative

study on the performance of prior SA4SE tools and pre-

trained Transformer models. We are the first to investigate

the effectiveness of various pre-trained Transformer-based

models for the SA4SE task. Our comparative study includes

six datasets: GitHub pull-request and commit comments, API

reviews from Stack Overflow, mobile app reviews, Stack Over-

flow posts, Jira issue comments, and code review comments.

Our experimental results reveal that the best performing fine-

tuned Transformer model outperforms the best performing

prior SA4SE tool by 6.5% to 35.6% in terms of the macro-

and micro-averaged F1-scores.

Overall, Transformer-based approaches are more ready to be

applied in the real world for sentiment analysis of SE data than

the existing SA4SE tools. In the future, we are interested in a

few directions: (1) applying Transformer-based SA4SE models

for further downstream tasks (e.g., API recommendation),

and (2) investigating the effectiveness of Transformer-based

models for other SE tasks.
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